Charge penetration and the origin of large O-H vibrational red-shifts in hydrated-electron clusters, (H2O)n-.
نویسندگان
چکیده
The origin of O-H vibrational red-shifts observed experimentally in (H2O)n(-) clusters is analyzed using electronic structure calculations, including natural bond orbital analysis. The red-shifts are shown to arise from significant charge transfer and strong donor-acceptor stabilization between the unpaired electron and O-H sigma* orbitals on a nearby water molecule in a double hydrogen-bond-acceptor ("AA") configuration. The extent of e(-) --> sigma* charge transfer is comparable to the n --> sigma* charge transfer in the most strongly hydrogen-bonded X(-)(H2O) complexes (e.g., X = F, O, OH), even though the latter systems exhibit much larger vibrational red-shifts. In X(-)(H2O), the proton affinity of X(-) induces a low-energy XH...(-)OH diabatic state that becomes accessible in v = 1 of the shared-proton stretch, leading to substantial anharmonicity in this mode. In contrast, the H + (-)OH(H2O)(n-1) diabat of (H2O)n(-) is not energetically accessible; thus, the O-H stretching modes of the AA water are reasonably harmonic, and their red-shifts are less dramatic. Only a small amount of charge penetrates beyond the AA water molecule, even upon vibrational excitation of these AA modes. Implications for modeling of the aqueous electron are discussed.
منابع مشابه
Optical properties of the hydrated charged silver tetramer and silver hexamer encapsulated inside the sodalite cavity of an LTA-type zeolite.
The optical spectra in the UV-VIS region of the hydrated doubly charged tetramer Ag4(2+) and hydrated multiply charged hexamer Ag6(p+) silver clusters encapsulated inside the sodalite cavity of an LTA-type zeolite have been systematically predicted using DFT, TD-DFT and CASSCF/CASPT2 methods. The optical behaviour of the model hydrated clusters [Ag6(H2O)8(Si24H24O36)](p+) is very sensitive to t...
متن کاملDFT-PBE, DFT-D, and MP2 Studies on the H2O•••HNH and HOH•••NH2 Hydrogen Bonds in Water-Aniline Complexes
DFT-GGA method of Perdew-Burke-Ernzerhof (PBE) is used with aug-cc-PVTZ, 6-311++G**, and Def2-TZVP large basis sets to study the hydrogen bond interactions between oxygen lone pair as a donor electron with hydrogen atom connected to the aniline’s nitrogen as an electron acceptor (H2O···HNH-Ph), and nitrogen lone pair with hydrogen of water molecule (Ph-H2N···HOH...
متن کاملTwo and Three-Body Interactions between CO, H2O, and HClO4
Intermolecular interactions of different configurations in the HOClO3···CO and HOClO3···H2O dyad and CO···HOClO3···H2O triad systems have been studied at MP2/6-311++G(2d,2p) computational level. Molecular geometries, binding energies, cooperative energies, many-body interaction energies, and Energy Decomposition Analysis (EDA) were eval...
متن کاملElectronic and vibrational spectra of protonated benzaldehyde-water clusters, [BZ-(H2O)n≤5]H+: evidence for ground-state proton transfer to solvent for n ≥ 3.
Vibrational and electronic photodissociation spectra of mass-selected protonated benzaldehyde-(water)n clusters, [BZ-(H2O)n]H(+) with n ≤ 5, are analyzed by quantum chemical calculations to determine the protonation site in the ground electronic state (S0) and ππ(*) excited state (S1) as a function of microhydration. IR spectra of [BZ-(H2O)n]H(+) with n ≤ 2 are consistent with BZH(+)-(H2O)n typ...
متن کاملInvestigation of Structural and Optoelectronic Properties of Sc2O3 Nanoclusters: A DFT Study
In this manuscript, density functional theory was used to explore structural, vibrational and optical properties of the (Sc2O3)n (n=1-5) cluster systems using DFT/B3LYP/LanL2DZ level of computation. Different stable isomers were obtained and numerous chemical parameters such as HOMO-LUMO gap, ionization potential and electron affinity were calculated successfully. Stability of the clusters was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 42 شماره
صفحات -
تاریخ انتشار 2006